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Statistics of Local Value in Quantum Mechanics
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Given a quantum mechanical observable and a state, one can constiasgiealob-
servable, that is, a real function on the configuration space, such that it is the optimal
estimate of the quantum observable, in the sense of minimum variance. This optimal
estimate turns out to be the quantum mechanical local value, which arises from several
contexts such as de Broglie—-Bohm'’s casual approach to quantum mechanics, instanta-
neous frequency in time—frequency analysis, Nelson’s quantum fluctuations formalism,
and phase-space approach to quantum mechanics. Accordingly, any observable can be
decomposed into a local value part and a quantum fluctuation part, which are indepen-
dent, both geometrically and statistically. Furthermore, the current density in quantum
mechanics, the osmotic velocity in stochastic mechanics, and the Fisher information in
classical statistical inference, arise naturally in connection with local value. In particu-
lar, Heisenberg uncertainty principle can be quantified more precisely by virtue of local
value.

KEY WORDS: local value; classical observable; Fisher information; conditional ex-
pectation; Heisenberg uncertainty principle.

1. INTRODUCTION

Classical mechanics is a deterministic theory, and there is no room for fluc-
tuations in principle, except when we are content to make some approximations
(e.g. in statistical mechanics). In quantum mechanics, things change radically,
since quantum mechanics is inherently probabilistic, and the Heisenberg uncer-
tainty principle places the irreducible fluctuations in a principle place. However,
de Broglie and Bohm have demonstrated that deterministic particle trajectories
is compatible with qguantum mechanics (Bohm, 1952; Bohm and Hiley, 1995;
Holland, 1993; the idea dates back to de Broglie in 1927). Their quantum poten-
tial theory points to the possibility and usefulness of assigning values of quantum
observables at each point of the configuration space. This is in contrast to the
orthodox quantum theory, which lays undue emphasis on global quantities (global
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averages). The notion of quantum mechanical local value manipulates a balance
between a quantum observable itself (which cannot be exactly measured in a rep-
resentation diagonalizing its conjugate observable) and its simple global average.
As emphasized by Bell (1987), Bohmian mechanics is essentially equivalent to
the standard quantum mechanics, but the pictures and viewpoints are somewhat
different. The fact that it is not as widely accepted as Feynman’s imaginary time
path integral approach may be purely due to historical accidents. While Heisenberg
uncertainty principle prohibits the possibility of simultaneously assigning exact
values to conjugate observables, it is possible to reconcile the complementarity by
assigningexactvalue to one observable (served as a reference observable, repre-
sentation observable) and an optimstatistical averagéo the conjugated one at
each value of the reference observable. The notion of local value implements such
a idea (Cohen, 1996; Holland, 1993; Wan and Sumner, 1988). A local value of
an observable in a state (wave function) is the representing operator acting on the
wave function, divided by the wave function, and taking the real part. Prominent
examples are quantum mechanical current density, Bohm'’s quantum potential, and
instantaneous frequency. See the remarkable monographs of Holland (1993) and
of Bohm and Hiley (1995) for extensive accounts.

The main point of local value is to exploit the complex structure inherent in the
mathematical formalism of quantum mechanics, and may be briefly summarized
as follows. First fix a reference observable (e.g. the position), and let the quantum
system Hilbert space b and a wave functiony € H be realized as a function
in the representation diagonalizing the fixed reference observable. Let another
observableA be represented as a self-adjoint operatofforwe may takeH =
L?(R). Consider the average

v Ay 2 , v Ay 2
(A) Zfl//*Alﬂd =/Re< >|¢|d +|/Im lv|2dag.
v q e q s q
Since(A)y, is a real number, the contribution of the average is only from the first
term, Re¢ZL). This motivates to split-Zt = £ into its real and imaginary

parts as

AV = Re(M) +i Im(M> .

v v 14

This seemingly simple and naive decomposition has intuitive physical significance
and interesting mathematical consequences. Phrased roughly, the real part (local
value) corresponds to a classical approximationrAofThe imaginary part (the
local spread) is of purely fluctuation character, and is connected with Nelson’s
quantum fluctuations in his stochastic mechanics formalism (Nelson, 1966, 1985).
In this formalism, Nelson derived the Sddiifiger equation from Newtonian me-
chanics plus stochastic perturbation (fluctuation), an assumed Markov diffusion
process induced by various fluctuations of a background field. The mysteries and
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counterintuitive effects of qguantum phenomena have their origin in the imaginary
part (quantum fluctuations). The key issue related to local value is this: for any
physical observable, itis possible to decompose it as a systematic part (local value)
relative to a reference observable, and an irreducible fluctuation part (local spread)
arising from the incompatible nature of the observable with the reference one. The
notion of local value is introduced in several contexts and has been studied by a lot
of authors (Bohm, 1952; Cohen, 1996; Holland, 1993; Wan and Summer, 1988).
If i is an eigenvector ofA with eigenvalues, that is,Ayr = ay, then

()-n ()0

asdesired. Thusin an eigenvectoPothe local value ofis exactly its eigenvalue,

and the local spread is zero. Otherwise, the local spread is not zero in general,
which represents a fluctuation arising from the imaginary part. Moreover, we have
(A)y = (Re(dl))y and

Var, (A) = / <Re<%> - (A)¢>2 [y (@)1*dq

+ [ (im( 2~ 2|¢(0|)|20|q- @)
[ (m(57)

From Eq. (1), Cohen (1996) interprets I%/#o as the local value of the observable
A(itis “local” in virtue of being a function in configuration space of the reference
observable), and Infg) as its local spread. Thus the variance of an observable
consists of as two terms: one of local value and one of local spread.

The purpose of this paper is to present some statistical interpretations of the
notion of local value and to investigate its fundamental properties. We focus on
its mathematical and physical aspects, ignoring completely its philosophy in rela-
tion to Bohmian mechanics. In the course, we see how the quantum mechanical
current density, the Heisenberg uncertainty relations, and the Fisher information
arise naturally. We will relate local value to conditional expectation and the prop-
erties of phase-space quasi-probabilities. The paper is organized as follows: In
Section 2, we address a statistical inference problem motivated by simultaneous
measurement of two conjugate quantum observables, and demonstrate how local
value manifests itself as the optimum solution. Local value interpolates between
the quantum observable and its global average. Some fundamental properties of
local value are uncovered, and several examples are illustrated. In Section 3, we
study the relationships between local value and Fisher information, and examine
the origin of the uncertainty in the Heisenberg uncertainty principles. In Section 4,
we relate local value with conditional expectation and phase-space distributions,
and show that local value is consistent with conditional expectation if we employ
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phase-space formulation of quantum mechanics. Section 5 is devoted to the exten-
sion of local value to non-self-adjoint operators, which may find applications in
quantum detection and estimation theory. Finally, Section 6 concludes with some
discussions.

2. QUANTUM OBSERVABLE, LOCAL VALUE,
AND STATISTICAL ESTIMATION

Consider a quantum system, whose pure state space is the complex Hilbert
spaceL2(R) (we will only work in position representation). Let € L?(R) be a
normalized wave function, and be a quantum mechanical observable, which is
a self-adjoint operator oh?(R). The probability spaceR, |v(q)|>dqg) may be
considered as a classical world in which the position observable and all observ-
ables commuting with it can be assigned exact values. The following statistical
estimation problem arise naturally: What is the best classical estima@tevdien
the quantum system is in the stat@ More precisely, we want to find a classical
observable, that is, eeal function A = A(q) on R (rather than an operator on
L2(R)), such that the variance

Vary (A — A_\)

is minimized subject to the conditiofA),, = (A),. Here we have interpreted
A as a multiplication operator ob?(R). Alternatively, we may also interpreted
A = A(q) as a classical random variable on the probability spBeéy((q)|? dq).
By the spectral theorem of self-adjoint operators in Hilbert spakésessentially
a real function of the position observalfle and thus commutes wit.

Theorem 1. The unique solution of the optimization problem

min Var,(A— A),  subjectto (A), = (A)y
A

Ao =Re( ) @, @)

Moreover, we have

Var, (A — A) = / (Im(%))zhmqu.

Proof: The result follows from a simple application of the Lagrangian multiplier
method and calculus of variations. Consider the Lagrangian

L(A) := Var, (A— A) — A((A)y — (A)y).
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In order to minimizeL (A), taking variation with respect té (perturbingA by a
small quantityt§ A, 8 A is a real function orR), we have

9 — _ — _ — _
ﬁL(Ath(SA) = —YIASAIY) — (VISAAY) + 2(W [ASAlY )y

+2U(W1(BAY ) — AP ISAlY),
2 _ _ _
%L(AHaA) = 2(y|(6A?Y) > O.

The first-order condition

9 — —

ﬁL(A +1t8A) |t—o =0
leads to

f (—(AY) @ V(@) — ¥ @(AY)E) + 2A@) ¥ (@)v (@)

—2*(@)v ()8 A(@) dg = 0.
SincesAis an arbitrary perturbation, we have

Aq) = (Ay)“(@v(a) + ¥ (@)(Ay)(@)) + A

1
2y*(@)y(a)
Aw)
= Re| — + A
(V)@
The multipliera is determined as = 0 by the conditior(A_\)],, = (A)y.
Now sinceA = Re(5%), we have

(A— Ay = (% - Re(’}—‘”)) y=i Im(’;—‘”) Yy WIA- Ay =0

Consequently,
Var, (A — A) = (YI(A— A)|Y) — (YI(A— A)y)?

-f(n(2)5) (m()+)
(o) v u

Remark We see thaf is precisely the quantum mechanical local value arising
from several other contexts (Cohen, 1996; Holland, 1993; Wan and Summer, 1988).
We should emphasize thatis dependent on the relevant statgout for notational
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simplicity, we have suppressed this dependence since it is always clear from the
context which state is involved.
PutA = A — A(the tilde indicates fluctuations); then we have the decompo-
sition
A=A+ A (3)

Clearly, bothA and A are Hermitian operators ob?(R). In the decomposition
equality (3),Ais a classical estimate &, some object intermediate between the
precise knowledge of and the global averaggd), . In other words A “tracks”

the observable A (optimally in the sense of Theorem 1), which is in a quantum
world, from the classical world. The residual partepresents inherent quantum
fluctuations ofAin the statey. Since(A)y, = (A)y, we have(A)w = 0. Moreover,

if A; andA; are two quantum observables, then we have

At Ar=A+ A, A+ A=A+ A
But in general, it isottrue thatA; Ay = A Ay, ALAr = AjAs.

Theorem 2. It holds that(,aw = (A)y, (AN =0,and

A=A A=A A=0 A=0.

Proof: The first two equalities are clear.
Since A= Re(%) is a real-valued function, and can be considered as a

multiplication operator oh.?(R), we have
= A _ —
A= Re(—w> = ARe(£> =A
v 14

Now by linearity,

A

Il
o

b d ;|>
> L|>| ?|>
I|f>|| >
>F.|C|> >

Il

p1
|

Il

?>z
O

A

Il
>
I

Remark The above result demonstrates that in certain sénaegA are geomet-
rically independent (orthogonal). Itis reminiscent of the orthogonal decomposition
of a Hilbert space vector via orthogonal projection. The operation of taking local
value mimics the orthogonal projection. B

If we indicate the dependence of the local valen two different wave
functions asA;, Az, and denote the corresponding quantum fluctuation parts as
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A, A,, then we have the following generalization of Theorem 2:

(A1)2 = A, (Zvl)zzAz; (A2 = Ao — A, (@220

These identities demonstrate the nice interactions among local values and quantum
fluctuations. B . .

Let Ao A:= 3(AA + AA) be the Jordan product @ and A, and following
Bohm (1951), let

Covy (A, A) = (y|Ac Aly) — (A)y (A)
be the covariance betweetn and A in the statey. The following result shows
that the decompositioA = A+ Aas alocal value part and quantum fluctuation

part is statistically independent, complementing the geometrical independence as
stated in Theorem 2.

Theorem 3. We haveCov, (A, A) = 0and
Var, (A) = Var, (A) + Var, (A).

Proof: To prove the first assertion, note that

(WIAAlY) = /(Kw)*/iw dq

() ) () v
= [rl) ()

- — . A A
(WIAAY) = —|/Re<7¢> |m(7‘”> w2 da.

Thus noting(A), = 0, we come to

v|?da.

Similarly,

Covy (A, A) = (w|AA|w> + (IAA[Y)) =

The second assertion is due to Cohen (1996). The simple derivation is as
follows:

Vary (A)
= (A= (A I(A = (A)y) V)
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=/|(A—(A)¢)1/I(Q)|2dq
=[G - )
:/‘Re<%$)> — (Al +i lm(%g) 2

=/<Re(%$)) —<A>w)2|w(q)|2dq+/(lm(%f))))zwm)ﬁdq

= Var, (A) + Var, (A). (by Theorem 1) O

We consider some particular cases. Let the wave fungtibe written in the
polar form:y(q) = r(q) €¢©@.

Example 1. If A= Q (the position observable), theW(q) gy (q) and thus
Q=0Q, Q 0, in conformity with intuition. IfA = P = —i |s the momentum
operator (we puh = 1), then

— 1 v ay* \ 3¢
P= 2||w|2< ‘/f_aq"’)_ﬁ

is the quantum mechanical current density (current velocity in Nelson’s terminol-
ogy; Nelson, 1985). The imaginary part

P
,m<_w) _ dlogly|
v 9q
is the osmotic velocity of Nelson.

Example 2. If A= (PQ+ QP) is the dilation operator, theA(q) = qa‘gg‘),
Moreover,

3 Iny(@)2\° )
T) (@) dg.

~ 1
Vary (A) = /(A— (A)y)Pl¥(@)I* da+ Z/ <1+ q
The last integral is connected with the scaling Fisher informatioh/¢f (see
Section 3). On the other hand Af= P Q! + Q1P (which s related to the time-
of-arrival operator of Aharonov and Bohm, 1961, in momentum representation),
then

A 200@ g m(ﬂ)z_galnr(q)

q oq v q 4q o2
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Example 3. If A= PB(Q)P, hereg is a real-valued function oR, then

— (dp\® 1 [ or
A”(a) ‘m%)

and
m(A) = L (pi0) 2000
14 aq \' aq r 0qaq
Theorem 4. Let P= —i % be the momentum observable aRd= P — P be
the quantum fluctuation. Let(q) = r (q) €@ be the polar form of/, then
< 1 9%r(q)
(P2=—-—+= ~
r(@ a9

Consequently, the local value of the squared quantum fluctuation is precisely
Bohm’s quantum potential.

Proof: FromP = P — P, and by the definition of local value, Eq. (2), we have

5 S5 5 52
B — Re((ijﬁ) _ Re((PZ— PP—PP+P )1p>.

14

SubstitutingP = —i-L andy(q) = r(q) €#@ into the above expression, we ob-
tain the desired result. O

3. FISHER INFORMATION, LOCAL VALUE,
AND UNCERTAINTY PRINCIPLE

Let { fo: 6 € R} be a parametric family of probability densities BnFrom
the theory of statistical inference (Cram1946), the Fisher information dj is

defined as
(0= [ (2D) @ ae @
:4/ (aJEﬁ))z dq. ®)

The definition (4) emphasizes the role of the statistical score funétfbl, and
the definition (5) employs the gradient of probability amplitudd,. It is pre-
cisely the coincidence of these two definitions that renders statistics useful in
treating quantum mechanical kinetic energy. The concept of Fisher information,
originated in early days of the theory of statistical inference (Fisher, 1925), has
found many interesting and inspiring applications in physics (Frieden, 1998). It



1722 Luo

is connected with the celebrated CemmRao inequality and the theory of max-
imum likelihood estimation (Craer, 1946). The significance and potential use-
fulness of the concept of Fisher information are well worth of further investi-
gations. By virtue of Fisher information, we can even formulate the Heisenberg
uncertainty principle concerning the position—-momentum pair as an exact equal-
ity rather than an inequality concerning variances (Luo, 2001). This formulation
guantifies Heisenberg’s original idea (Heisenberg, 1928) more precisely. After
all, Heisenberg's original formulation of uncertainty principle is expressed as an
approximate equality.

When fy(q) = f(q — 0), that is, the parametéris a location parameter, by
the translation invariance of Lebesgue integral, we have

1 (f5) =4/ (ag@f dq,

which is indepedent af, and we may denote it d¢ f). This fact is in accordance
with Mach'’s principle, sincé ( fy) describes in certain sense the shapé,ofind
since allf4(q) = f(g — 0) are of the same shape (or convey the same information,
there is no absolute origin.)

Similarly, whenfy(q) = 6f(6q), thatis, the parametéris a scale parameter,
after some simple manipulation of changing variables, we obtain

In f(a))?
= [ (1+0" 5 @) 1@da

Let ¥, € L2(R) satisfies the Schdinger equation

.0y
I —— = Ayy. 6
50 Yo (6)
Hered is interpreted as a parameter which may represent a temporal shift or a
spatial displacement. According to the postulate of quantum mechahics,
|v|? describes the probability density of the position observable, and its Fisher
information is

[ 2\2 2
1oy = [ (FO) a@eda=4 [ (12D dq

If § is an estimator (measurement) forthen the celebrated Cram‘Rao
inequality states that (Craan 1946; Helstrom, 1976)

3 ) 2
2 - (55(0)w)
[(Iel) = 7\/&1%(@) .
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In particular, if (8),, = 6 + constant, then

I (1yel?) >

—. 7
Vary, ) ")

This inequality places an upper bound of the estimation precision (reciprocal
of variance) in terms of Fisher information.

Theorem 5. Let yy satisfy the Sclidinger equation (6) and has polar form
Yo =r9€%. Let A=Re(%) be the local value of the observable A.
Then

L O R 7 I S
A= 2| |2 (W 30 90 w") = a0
Moreover,
— 1

Vary, (A) = Vary, (A) + 71 (1vs]°), (8)

or equivalently,
~ 1
Vary, (A) = 21 (195 [?). )

Thus the variance of the quantum fluctuation is essentially the Fisher information.
Proof: Noting thatAyy =i % we readily get the first equality. Now

Var,, (A) = f (A= (A, )Wo(@)? dg

- J|(5ia - e v o
SR ) - e m( ) o

= [ (re( 222 - <A>¢,,>2|wa(q)|2dq
o [ (m(A20) Yy, qrac

_ f(/i(q)— (A>://9)2|¢9(Q)|2dq+/<

d Inry(q)

2
2
) (@idq
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| 2
— Var,, (A) + ; f(%) (@2 dg

_ 1
= Vary, (A) + ZI (1¥el?).

By Theorem 3, the last assertion follows. O

Remark Wheny, satisfies Eq. (6), the local valie= P ‘2(1#9*% - dﬂl// )=

— 35 2y is a generalization of the quantum mechamcal current per unit mass per
unit density (wherA is the momentum operator, we hayg(q) = ¥ (q — 6) and
Areduces to the conventional current density).

In contrast to inequality (7), which places a lower bound of the Fisher in-
formation in terms of variance of an estimator of the parameter, Theorem 5 es-
tablishes a simple identity relating the Fisher information and the variance of
the squared quantum fluctuation. In particular, Eqg. (8) implies an upper bound
for the Fisher information in terms of the variance of the generétaf the
motion:

4Vary, (A) = 1(|y]?). (10)

Combining inequalities (7) and (10), we have the following inequality chain:

Corollary 6. If ¥, satisfies Eg. (6), then

4Vary, (A) > 1(1¢s)?) >

~ Vary, () (1)

In particular, Vary, (0)Vary, (A) > }1_

From the above result, we see that the Fisher informalt{pw,|?) already
encodes more information about the uncertainty principle than the usual variance
formulation. The inequality chain (11) also unifies and refines the conventional
Heisenberg uncertainty relations concerning the conjugate pair of position and
momentum, as well as the conjugate pair of time (interpreted as a parameter in the
Schidinger equation) and energy. This is explained as follows:

(1) Let 6 = Q be the position observable (measurement) defined as
Qvis(d) = ays(q), and A = P = —i 7. be the momentum observable.

Lety =y € L?(R) be any Schwdinger wave function; thetr,(q) =
e %Py (q) = ¥(q — ). In this circumstance,

2 2
(vl = l(wf|2)=/(%) (@)2dg
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is independent of the parametgrand we have
<Q>1//9 =0 + (Q)l//i Varl//g(P) = Varl//(P)! Var%(Q) = Varl//(Q)l
L(|9ol?) = 1(1¥1%).

Thus the inequality chain (11) reduces to

> 2 >

4Var, (P) = 1 (¥ 1) = s,
which clearly implies the familiar Heisenberg uncertainty relation for
the canonical pair of position and momentum. From Theorem 5, we also
see that the uncertainty comes from two parts: the first is the intrinsic
irreducible randomness of the state (wave function) and the second is from
the incompatibility (complementarity, noncommutativity) ®fwith Q.

(2) The time—energy uncertainty relation is a more subtle, and even contro-
versial, issue in the Hilbert space formalism of quantum mechanics. The
reason is the lack of a time observable (in the sense of a self-adjoint op-
erator). See Gislascet al. (1985) for a concise review. However, if we
interprettime only as a parameter, we obtain the same form of uncertainty
relation as the position—momentum pair by meandadsicalstatistical
inference. This is already incorporated in the inequality chain (11) if we
regardA as an energy operator afds timet.

4. CONDITIONAL EXPECTATION, LOCAL VALUE,
AND PHASE-SPACE DISTRIBUTIONS

In classical probability, if X, Y) is arandom vector on some probability space
(2, F, P) with joint probability densityp(x, y), then we have the conditional
probability p(y | X) = péx'y). We also have the conditional expectatioiXB(Y)

X
and the conditional variance Va¢(| Y), both of which are essentially functions

of the random variabl¥, and thus are also random variables themselves. df
L?(Q2, F, P), thenthe conditional expectationX¥( Y) s the projection o from

L?(2, F, P) to the subspace?($2, o(Y), P). Hereo (Y) denotes ther-algebra
generated by the random variabieWe have

E(X):/(/xp(xw)dx) pw)dy = [ [ xpix. yydxy

Var(X) = / (x — EQO)p(x, y) dx dy
EXX 1Y) = /xp(x | Y)dx

Var(X | Y) = /(x — E(X))?p(x | Y)dx.
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Moreover,
Var(X) = Var(E(X | Y)) + E(Var(X | Y)).

This last identity is analogous to Eq. (1). Thus local value%e)qs formally like
the conditional expectation K(| Y), and the local spread Irﬁji) is formally
like the conditional variance Vax(| Y), with A corresponding t, the reference
observable tdr, and the staté to the probabilityP.

In guantum mechanics, various distribution functions have been introduced
(Cohen, 1966; Hilleryet al,, 1984; Lee, 1995). They are pseudo-probability den-
sities in the sense that they may take negative values. The motivation is to express
guantum expectation values as the average of a classical observable under a prob-
ability distribution on phase space (or configuration space). Cohen (1966) intro-
duced a very general class of guantum mechanical phase-space (or time—frequency)
distributions which incorporates all existing ones:

1 o
0@ P = 5 [ € Py (x= D)y (x+ 2) ke mde dnx.

12)

Herek(&, n) is a kernel function. Alternatively, we may write

1 o
0@ P) = 5 [ €M ) ds dy

with M (&, n) = k(&, n)A(&, n), where
A, n) = /eisxlﬂ* (X - g) v (x + g) dx

is usually referred to as ambiguity function. In order to satisfy the desired marginal
properties

/<b(q, pydp= v (@)P. /cb(q, pyda= 19 (p)2.

we must impose the conditiok(¢, 0) = k(0, ) = 1. Herey/(p) = J% IRAC);

e '9% dqis the Fourier transform af-. The distribution (12) contains many previ-
ously introduced distributions as special cases. For example, k{ben) = 1, it

is the prominent Wigner distribution.

Now ®(q, p) is a general quantum mechanical phase-space distribution (al-
though it may take negative values), and we may consider various quantities de-
rived from it by following formally the classical probability procedures. One may
wonder what is its behavior under conditional expectations. For example, we

may define®(p | q) = 7%} as the conditional probability oP when Q = q
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(although it may take negative values), and we can also define the conditional
expectation

E(qu)=/p<l>(p|q)dp-

Theorem7. LetP = —i- be the momentum observable—lk(é} n) ly=0 =0,
then

P(g) = E(P | q).

That is, the local valué® is precisely the conditional expectation of P, given the
position Q= g, under the phase-space distributidn

Proof: Write v in polar form asy(q) = r(q) €@, let §(n) be the Dirac delta
function, and notg e~'"P dp = 27 §(); therefore we have

E(qu)=fpd>(p|q)dp

= |1/f(:)|2 / Pe(@.p)dp

=Gy ] [ [ [peremiv (-3)v

« (x+ g) k(£ n) d& dndx dp

« (x + 9) K(£, n) d& dn dx

_ o) k.
= 2n|w(q)|2/ / ol (k(g o an '”=°>

x €609 dg dx

_ 28000,
— s | 200 s - dx
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Remark There are infinitely mank(¢, n) satisfying the conditiona%k(s, n)
l,=o =0. Some physically motivated simple examples are

Sin(&' 7]/2) e—Ezﬂz/Z

k(&,n) =1, cos€n/2), 02

5. LOCAL VALUE OF NON-SELF-ADJOINT OPERATORS

In the theory of quantum detection and quantum estimation, the measurement
of non-self-adjoint observables may turn out to be more useful than the measure-
ment of self-adjoint observables in some circumstances (Helstrom, 1976; Yuen
etal, 1975; Yuen and Lax, 1973). Just like any complex humber can be written as
the combination of two real numbers, for a general operatave can also write
A+ A* A— A*

, A= —.
! 2
Here bothAg and A, are self-adjoint operators. Consequently we may define their
local valueAr and A, as in Section 2. From this we define the local valuéafs

A_= A_\R-i-ip_q.

A= AR+iA|, with AR =

Similarly, we have the quantum fluctuatioAg and A, and we may define
A=MAg+iA.
By the linearity, we have the decomposition formally identical to Eq. (3).
A=A+A

To consider an example, let us determine the local value of a general operator
in the ground state of the harmonic oscillator with one degree of freedom. Let
an operator (not necessarily self-adjoidt)on L%(R) be represented in a series
expansion of the canonical position—momentum pQir P) as

A= )" an,Q"P". (13)

m,n=0

Herean n's are complex numbers. We want to find its local value in the ground
state of the harmonic oscillator. For this purpose, it will be suffice to introduce the
creation operatoa™ and the annihilation operatar (they are mutually adjoint)

Q—ip af_Q+iP
v2 o V2

Clearly, @, a*] = 1 and the Hamiltonian of the harmonic oscillator Hs=
a+a—+%. The orthonormal eigenfunction&/,(q)} of H is given by the

at =
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Hermite functions
Un(@) = (212" V2h (q)e 972, n=0,1,2,...
andhp(q) is the Hermite polynomial given by

PR L
ha(q) = (—1)" € B_q”e +.

The ground state dfl is

¥(a) = Yo(q) = x4 e 972,

Now by virtue of the commutation relatioaf, a*] = 1, we can arrange the series
representation (13) in the Wick order (normal order) form in termstonda~
(thatis, the creation operator always occurs to the left of the annihilation operator):

A= i Cmnatma™".

m,n=0
Then
o0 o0
AF = Zc atha~ chma““
m,n=0 m,n=0
and thus
o0 K o0 k
Cmn+Cnm Cmn—Cnm
Ag = —MMgtmg—n A= —— Rgtma",
2 5 2
m,n=0 m,n=0

Consequently, note that ¢ = 0 anda*t™y = (m!)¥2y,, we have

_ 00 - *m 1)1/2 "
A ) (0@

m=0
> C C,
= Z Re( mo ¥ °m> 27™ (@)
=0
Similarly,

o]

— G C
A = Z Re(%) Z—m/Zh (q)
0

m=

_ im(c"‘o COm) 2-2h,.(q).
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Finally, we obtain

o0
- - = c
A=Ae+iA=3" WTm/th(q).

m=0

By the above method, we can also calculate the local valueinfany state
¥m by noting thata=y = 0, a~ ¥, = nY2y_1, a*yn = (N 4+ 1)Y?Yny1.

6. CONCLUSIONS

We have presented various statistical interpretations of the concept of quan-
tum mechanical local value, which arises naturally in several contexts of quantum
mechanics and time—frequency analysis. Local value provides a classical estima-
tion and visualization of incompatible quantum observables. The basic idea is to
fix one reference observable, and approximate the other one in the fixed repre-
sentation, that is, assign a best statistical average value to the observable at each
value of the reference observable. This method leading to local value is in com-
plete parallel with projection technique, with the least square, and with conditional
expectation in spirit. By decomposing a quantum observable into a local value part
(classical) and a local spread part (quantum fluctuation), we see clearly how the
uncertainty of the quantum observable comes from two statistically and geomet-
rically independent parts. Moreover, the statistical notion of Fisher information
enters naturally into this scenario, and the Heisenberg uncertainty relations can be
analyzed more deeply, from both physical and mathematical aspects. The notion
of local value may find more applications in the de Broglie-Bohm’s casual and
pilot wave interpretation of quantum mechanics. In particular, it may serve as an
intuitive guidance in treating some quantum phenomena which seem so peculiar
and mysterious in the standard formalism.

Finally, we point out that although we have worked only in the framework
of position representation and pure state (wave function), the extensions to other
representation and mixed state (density operator) are straightforward, and some
new phenomena connected with the information contents of mixed state should be
expected.
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